If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7s^2+6s+1=0
a = 7; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·7·1
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{2}}{2*7}=\frac{-6-2\sqrt{2}}{14} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{2}}{2*7}=\frac{-6+2\sqrt{2}}{14} $
| 9(3+b)=4(b+13 | | 3×+2=x+20 | | h+299=382 | | 3×+2=y+20 | | 45000-675t=37300-400t | | 5x+2=2×-10 | | 6x=60-9 | | -2(m-3)=2(3-m) | | 6x=69-9 | | 18=3.y | | -x^2-7x-18=0 | | 1=-1/4x+3/4x | | -x*2+7x-18=0 | | 7-4x+11=65 | | 1/2n-3=0 | | 11/2n=10 | | -17x-50=-11x-26 | | X.7(8+7x)=133 | | r– 34= 7 | | 11z=352 | | -5y=-11 | | 285=19p | | r– 3/4= 7 | | 3y+7y=282-8(y-3)$ | | 14-55+2x=70 | | 49=-7/2v | | 29f=870 | | -15x+89=-8x+47 | | 4f—6=10f | | 3.55x=178 | | 7x=355 | | (x-7)/3=-5 |